

GREETINGS ON WORLD PATIENT SAFETY DAY

RADIOLOGY - EARLIER

RADIOLOGY -> RADIODIAGNOSIS

RADIOLOGIST IN PRESENT DAY

Patient Safety in Radio-Diagnosis

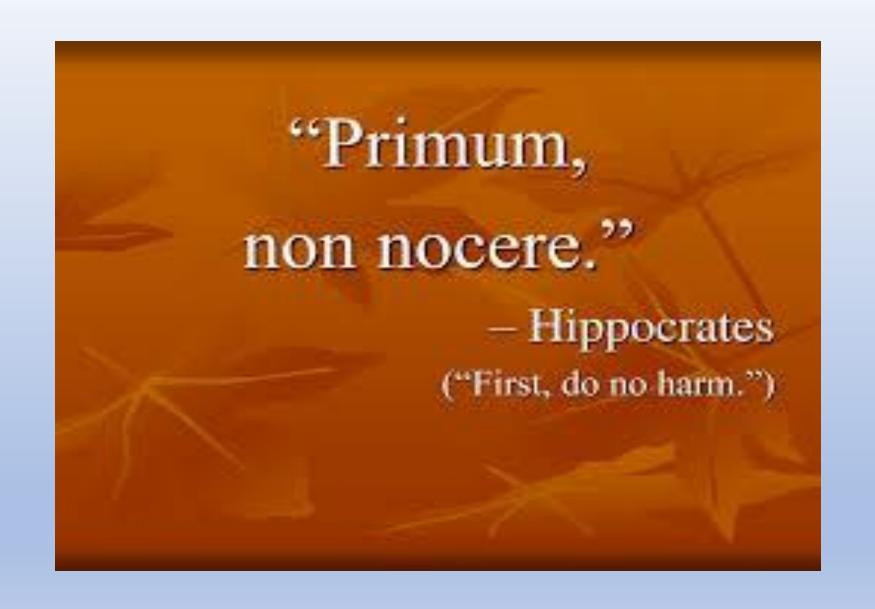
DR ANUPREET TANDON

Senior Consultant, Radio-Diagnosis

Mahahjan Imaging, PSRI Hospital

DELHI

IMPORTANCE OF PATIENT SAFETY

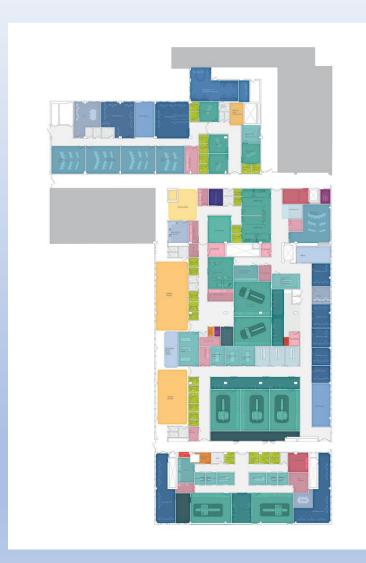

Radiology plays a pivotal role in diagnosis and treatment

• Safety issues can lead to harm, errors and adverse issues


Patient safety is top priority in healthcare

The history of patient safety

Radiology department functioning


To Ensure Safety in Radiology department – Variables are :

• The Layout & Infrastructure

- The Human Factorfrom the patient registration -> preparation -> waiting period -> Radiology study -> till the report delivery
- **The Machines**Radiation and Contrast hazards , technical Maintenance and Upgradation

Radio-Diagnosis Dept - Layout

- Registration & Layout approval AERB
- Certification Display
- Structure keeps in mind one way transit to avoid crowding
- Construction keeping transit of all patients -- ambulant & assisted to move safely
- Structure keeps physical safety, radiation protection & infection control in cognizance

The Radiology department.

The Layout & Infrastructure

• The Human Factorfrom the patient registration -> preparation -> waiting period -> Radiology study -> till the report delivery

 The MachinesRadiation hazards, technical Maintenance and Upgradation

The MedicinesContrast administered / LA / GA

Patient identification and verification

- Accurate patient
- Correct study
- Correct part
- Correct side

- Maintaining patient privacy
- Identifying Any Risk Factors : Pregnancy / Age related issues

Effective Communication

History

Informed Consent

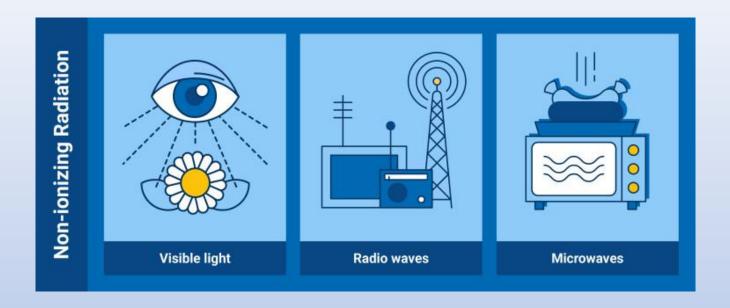
• Risk Factor assessment incl. Preg

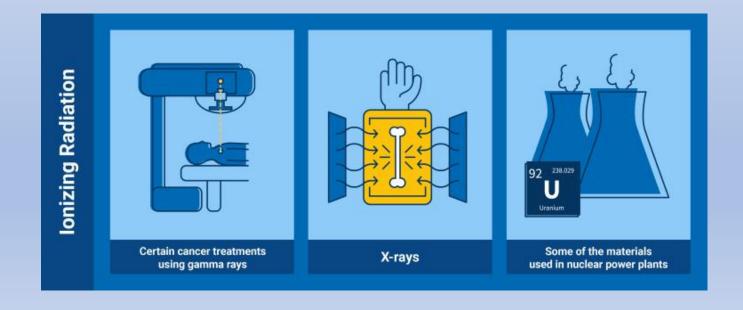
The Radiology department.

The Layout & Infrastructure

The Human Factorfrom the patient registration -> preparation -> waiting period -> Radiology study -> till the report delivery

- The MachinesRadiation hazards, technical Maintenance and Upgradation
- The MedicinesContrast administered / LA / GA




Back to School.....

What is radiation -

Radiation is energy that moves from one place to another in a form that can be described as waves or particles.

We are exposed to radiation in our everyday life.

Types of Radition & Bio Effects

• α-particles

- Two protons plus two neutrons
- Helium (He) nuclei
- Charged particles (2+)

β-particles

- Electrons (or positrons)
- Charged particles (- or +)

γ-rays and X-rays

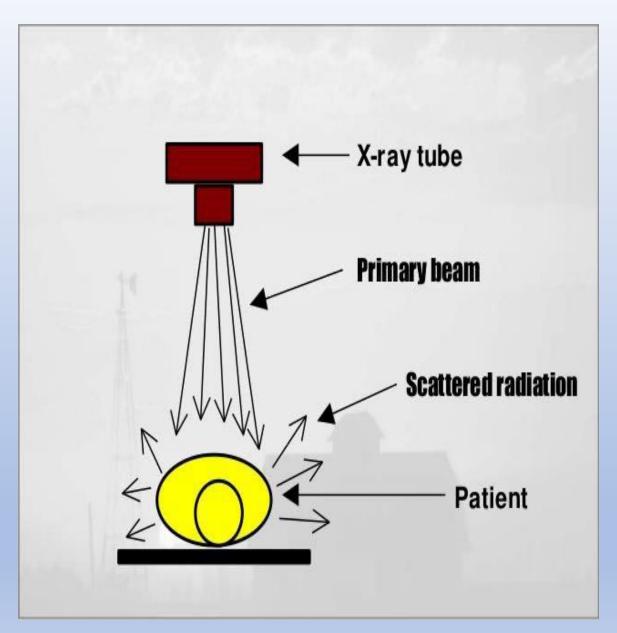
- Electromagnetic waves (photons)

MMMMM

Low ionization density/high penetrating power

Neutron beams

- Neutrons
- Uncharged particles


Ionization Density = > Bio Effects

Both Curies were constantly ill from radiation sickness Marie Curie's death from aplastic anemia in 1934, at age 66, was likely caused by radiation exposure

Her books & papers are still so radioactive that they are stored in lead boxes.

Types of Radiation

Primary Radiation: Primary radiation (also called as useful beam) is the radiation emitted directly from the x-ray tube that is used for patient imaging.

Primary Barrier: It is a wall, ceiling, floor or other structures that will intercept radiation emitted directly from the x-ray tube.

Secondary Radiation: Secondary radiation consists of x-rays scattered from the patient and other objects such as imaging hardware and leakage radiation from the protective housing of the x-ray tube.

Secondary Barrier: A secondary barrier is a wall, ceiling, floor or other structures that will intercept and attenuate leakage and scattered radiation emitted from patient and other objects

Radiation dose

Dose quantities

Absorbed dose

Energy deposited in a kilogram of a substance by the radiation

Equivalent dose

Absorbed dose weighted for harmful effects of different radiations (radiation weighting factor w_R)

Effective dose

Equivalent dose weighted for susceptibility to harm of different tissues (tissue weighting factor w_T)

Rad units

Quantity	S.I Units	Traditional Units
Exposure	Coulomb/Kg	Roentgen (R)
Absorbed dose	Gray (Gy)	Rad
Equivalent dose	Sievert (SV)	Rem
Effective dose	Sievert (SV)	Rem

Diagnostic Procedure	Typical Effective Dose (mSv) ¹	Number of Chest X rays (PA film) for Equivalent Effective Dose ²	Time Period for Equivalent Effective Dose from Natural Background Radiation ³
Chest x ray (PA film)	0.02	1	2.4 days
Skull x ray	0.1	5	12 days
Lumbar spine	1.5	75	182 days
I.V. urogram	3	150	1.0 year
Upper G.I. exam	6	300	2.0 years
Barium enema	8	400	2.7 years
CT head	2	100	243 days
CT abdomen	8	400	2.7 years

BIOLOGICAL EFFECTS OF RADIATION

Low Doses = DAMAGE GENETIC CODE High Doses (>500mSv) = KILL CELLS ACUTE RADIATION SYNDROME

- Radiation can cause
 - SOMATIC DAMAGE Whole body rapidly dividing cells
 - GENETIC DAMAGE Ova / Sperm Cong. Abn / Stillbirths / Chr. changes

Damaged Genes dominant -> Next Generation Damaged Genes recessive -> After few Gen's

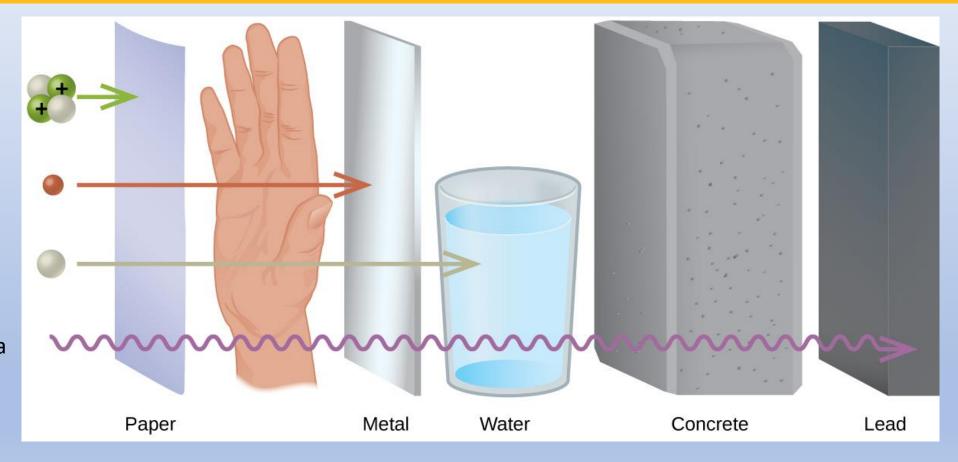
• CANCER -- >5 times

Hiroshima & Nagasaki - The Hibakusha journey

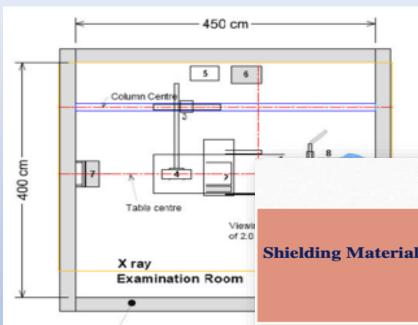
By the end of 1945, bombing killed approx. 1.4 L in Hiroshima, & 74 K in Nagasaki

Following years the survivors had leukemia, cancer etc

Devices for measuring radiation a) Gieger Counter b) Scintillator c) Dosimeter


Radiation hazard prevention

Alpha


Beta

Neutron

Xrays / Gamma

RADIOLOGY DEPTT LAYOUT PLANNING

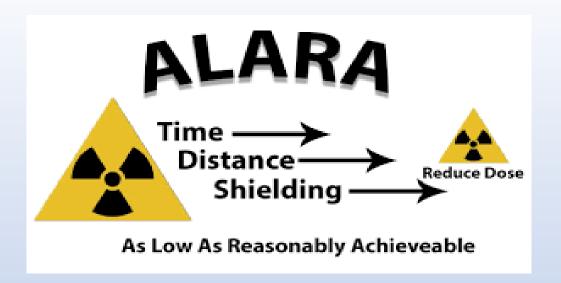
Wall thickness of CT / X Ray room

Radiography and Fluoroscopy unit....

f 2.0		Distance from centre of patient Table			
	Shielding Material	1.5m	2.0m	Primary wall of	
m				dedicated chest x-ray	
-				installation at 2 m	
า	Brick(cm)	23	20	20	
	Concrete (cm)	15	12	12	
	Steel(cm)	2.3	2.0	2.0	
	Lead(cm)	0.17	0.15	0.15	
	**Any other material	2.0TVT	1.8TVT	1.8TVT	

Floor(if installation is not on ground floor) and ceiling thickness of 6-8 inch concrete is adequate.

** Note: Lead free shielding material have been developed by CSIR. These materials may also be used as radiation protection in medical diagnostic x-ray installation


X-Ray Installation

Radiation safety

• USE ALTERNATIVE IMAGING MODALITIES WHEN POSSIBLE

OPTIMIZE RADIATION DOSES

• ALARA :- AS LOW AS REASONABLY ACHIEVABLE

1. Time

- Reducing the time of exposure -> reduce radiation dose
- Dose rate is the rate at which the radiation is absorbed.
- Limiting the time of radiation exposure --> radiation dose.

2. Distance

- Increasing the distance between you & source you will reduce exposure by the square of the distance.
- Doubling the distance between your body & source will divide the radiation exposure by a factor of 4.

3. Shielding

- <u>Lead apron, Neck Collars, lead glasses,</u>
- Mobile lead shields, & lead barriers.

Use of protective lead aprons & their maintainence

TLD Badges

The Radiology department.

The Layout & Infrastructure

The Human Factorfrom the patient registration -> preparation -> waiting period -> Radiology study -> till the report delivery

 The MachinesRadiation hazards, technical Maintenance and Upgradation

• The MedicinesContrast administered / LA / GA

"Contrast Media"

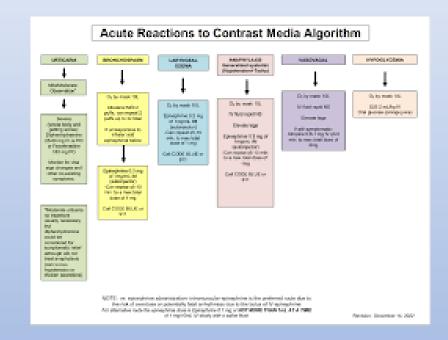
- substance placed in the body to provide added contrast when subject contrast is low
- increases the radiographic contrast between the area containing the CM & areas not containing CM

With

.

Adverse Reaction to Contrast Agents

• MILD


- GI N/V
- CNS headache / dizziness / anxiety
- Resp nasal stuffiness
- Systemic Itching / Rash / Chills /

MODERATE

- CVS HT / Tachycardia
- Resp -- Bronchospasm / Dyspnea
- Gen -- Erythema


SEVERE

- CVS Arrythmia / MI
- CNS Convulsions / Unresponsiveness
- Resp Laryngeal edema (progressive)

CRASH CART

- Adrenaline For allergic reactions
- Atropine -anti-arythmatic
- Buscopan For pain reliving
- Hydrocortisone For allergic reactions
- Dopamine -to increase blood pressure
- Sodium bicarbonate -for electrolyte imbalance
- Diazepam -forsedation
- Avil as anti- allergic agent

Emergency Drugs of & Radiology departmen.

Equipment and quality assurance

Regular checks and quality control

Use of safety features like automatic exposure control

Staff training and education

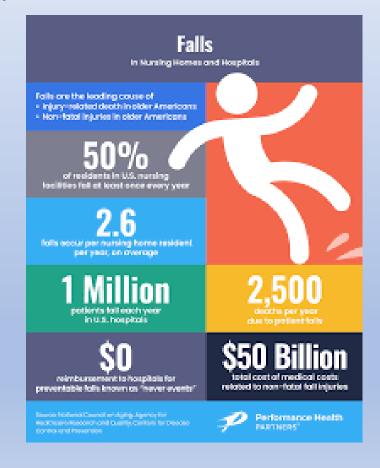
Annual maintainence and Caliberation

Staff training and education

- Radiation Safety
- Infection Control & Prevention
- Patient safety
- Basic Life Support
- Quality Mx Systems

Patient monitoring and Support

Monitoring patients during and after procedures after taking informed consent


Providing support and care during adverse reactions

Fall Prevention

Compatibility for Differently Abled / Unwell / Aged pt's

Skid Proof flooring

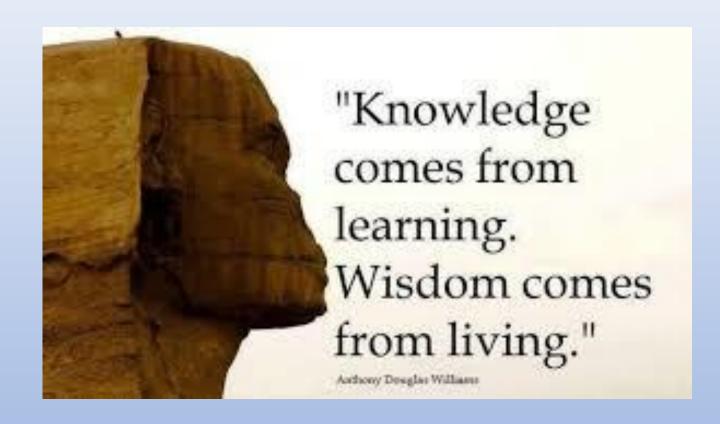
Wheel Chairs / Stretchers / Grab bars

Fire Safety

Fire Exits

• Extinguishers

• Staff competence to operate devices


Infection Control

- Periodical Staff Check up / Immunization
- Hand Hygiene Protocols Washing / Sanitizing
- P.P.E
- Decontamination of Equipment & Area
- Disinfection of Patient Care Area
- SOP for B.M.W. management

THANK YOU!

